14 API Concepts and
Usage

SpectrumSCM is a process driven Source Configuration Management System that can be used
to manage the life cycle of any electronic asset. Users of the system define workflows in the tool
that correspond to the processes that are already in place within their organizations. By default,
workflows defined in SpectrumSCM are considered ad-hoc, which means that work items can
be assigned from any user defined phase into any other user defined phase’. The responsibility
of moving work items from one phase to another falls on the shoulders of users that have been
assigned that particular responsibility® (Project Managers, etc...).

With the advent of the graphical workflow system under release 2.4, Spectrum has introduced
the capability to perform some automations directly through the UL These include the
“Promotion Recipient” and callouts. The API mechanism is still supported as a general way to
extend the SpectrumSCM system and in particular, because it is Java based instead of shell
based, it is more efficient.

The purpose of the SpectrumSCM API (Application Programming Interface) is to allow users of
the system to construct automated business systems by implementing a well defined set of event
triggers and interfaces. An automated business system relieves the burden of making particular
users or team leaders responsible for performing certain tasks manually and adds the ability to
automate decision making processes, including the automation of interfaces to external systems.
External system integration allows issue tracking numbers and content from external systems to
be easily integrated into and out of the SpectrumSCM system.

Custom programs that implement the SpectrumSCM APIs are written in the Java programming
language and are known as plugins in SpectrumSCM. Plugins are easily compiled and can easily
be added to a running SpectrumSCM server through an XML interface. Plugins are loaded
dynamically into the server at run time. Dynamic loading also allows the plugins to be changed
by the developer and reloaded without impacting the server. The SpectrumSCM plugin

? Only users with the proper permissions model can actually assign work items. Such ad-hoc
transitions are still fully recorded to provide the required audit trail.

3 See the SpectrumSCM User Guide Chapter 5 on User Management.

14-1

Chapter 14 API Concepts and Usage

configuration allows for one or more plugins to be actively configured into the system.
Individual plugins can be turned on or off by simply modifying the plugins XML definition file.

14.1 Manual vs. Automated Workflow

By default, the SpectrumSCM system provides for the manual ad-hoc workflow process. This
decision was made because of the complexities involved with trying to configure and support an
automated workflow system right out of the box. The manual system allows the majority of
users to quickly and easily get started with SpectrumSCM. The automated systems, both in
terms of the graphical workflow and the API, allow the more advanced environments the
flexibility they need to configure/automate their needs. Every organization has a different
definition of what a workflow system should accomplish and how it should work. Our goal was
to be able to handle the common denominator of all workflow systems and then allow for
complete customization through server extensions. SpectrumSCM has accomplished this goal
with their base system, the graphical workflow and the API extensions.

14.2 A Typical Simple Workflow Process

The SpectrumSCM system allows the user to create completely customizable workflows.
Through the use of API mechanism, users can tailor their business process workflow to be
cognizant of overall business practices. This allows for external business rules to be executed as
part of the transition of an issue or Change request. The following workflow diagram is an
example of a trivial software development workflow.

To Be Assigned

Reqguirements Study Cevelop Test
Profectdday Frofectddd?
Create CR Assign To Release

In this example, there are four user defined life-cycle phases Requirements, Study, Develop and
Test. In the SpectrumSCM system, Change Requests (CRs) can be created and immediately
assigned to any phase within the defined life-cycle. In this example, the CR (Project0001) was
initially created and assigned to the Requirements phase. As Change Requests are manually

14-2

Chapter 14 API Concepts and Usage

progressed from phase to phase by the end user, they are not immediately progressed into the
next defined phase. Each Change Request is first progressed into the TBA® super phase. The
TBA super phase is where all manually progressed change requests are assigned, unless they are
directly assigned into another user defined state by a user with the proper permissions. This
supports the working model where a developer or tester does not have assignment privileges, but
the project/team lead does. The appropriate user (project/team lead in the previous example)
would then manually assign the CR into the next appropriate phase. When change requests are
promoted into the TBA phase, e-mail notifications are sent to the appropriate users so that
process decisions about where the CR should go next can be made.

14.3 An Automated Workflow

In an automated workflow, progression decisions for manually progressed Change Requests are
delegated to an automated workflow engine. The engine, in this case built using the
SpectrumSCM API, can apply business process decisions to each individual CR and assign them
to the next responsible user, or place the CR in a holding pattern until certain business rules have
been satisfied. For instance, a CR may not be eligible for promotion from the Develop phase into
the Test phase until some form of code review has been performed. This diagram depicts the
flow of control:

To Bit Assigned ‘

Hequremeri Bl ‘ [eeiap Tarnt ‘
Proyaciieey?

b N 'IT—: \"‘-_ "'rl-! \""_'\-\._ 1.-:

=i _I.'r - T_:l g e

R .-"—:*". — oy =

b [.'\'I'i -r'_-'_‘!“"bl _ "y 1|':. -~ B)
Coreshe ¥ s Fa - ¥ asann ToRelpas
g | = -
i -~

- [
Workow Engere

In this workflow, Change Requests are manually progressed out of each phase. When the
Change Request enters the TBA super phase, the user defined automated workflow engine is
immediately activated and decides where the Change Request should go next, and to whom it

4TBA = To Be Assigned

14-3

Chapter 14 API Concepts and Usage

should be assigned. In this example, when a CR is progressed out of the Develop phase it is not
immediately progressed into the Test phase. But rather it is left in the TBA super phase by the
workflow engine until certain business rules have been followed.

14.4 API Activation Points

The SpectrumSCM API provides four separate activation points. The activation points can be
used to enable a single automated extension, or can be used separately to implement independent
extensions. Plugins that are associated with the activation points are run in separate threads of
execution. Running the plugins in separate threads guarantees that the basic responsibilities of
the SpectrumSCM server are never blocked.

14.4.1 System Startup and Shutdown
There are two activation points specifically designed to work with system startup and
shutdown. When the SpectrumSCM server is started or stopped, all registered plugins are
searched to see which ones implement the SystemListener interface. Each plugin that
implements this interface is called from a separate thread of execution. It is possible that,
given the length of execution of any particular startup or shutdown transaction, several
plugin transactions may run concurrently.

- Example Usage
Use the startup and shutdown activation points to connect the SpectrumSCM server to
external issue tracking systems or other external business systems.

14.4.2 Change Request Transition
Change Request transitions define the third plugin activation point. When a Change
Request transitions from a user defined life-cycle phase into the TBA super phase, all
plugins that implement the ChangeRequestListener interface are executed in separate
threads. The change request transition activation point is one of the most useful activation
points. Fully automated workflow systems will use this activation point as an event trigger
for applying custom change request routing logic and other business processes.

- Example Usage
Use the change request transition activation point to implement a business rule sensitive
automated workflow system.

14.4.3 Change Request Creation
Change Request creation defines the last plugin activation point. When a new Change
Request is created in the SpectrumSCM system, this plugin activation point will be called in
a separate thread of execution.

- Example Usage

Use the change request creation activation point to communicate change request creations
to downstream project management systems.

14.5 Implementing the Interfaces

14-4

Chapter 14 API Concepts and Usage

In order to create a user defined plugin, API users must first implement one or both of the
Java interfaces defined by the API described below.

14.5.1 The SystemListener Interface

This interface defines the methods that are used by the startup and shutdown activation points.
Users can implement this interface to create long running processes that are integrated directly
into the SpectrumSCM server itself. For example, this interface could be implemented in order
to create an active interface with an external system.

The following code block illustrates how to implement the SystemListener interface:

import scm.pub.interfaces.SystemListener;

public class WorkflowEngine implements SystemListener {
public void startUp() {...}
public void shutDown() {...}

14.6 The ChangeRequestListener Interface
This interface defines the methods that are called during Change Request creation and transition.
The ChangeRequestListener interface defines the following two methods:

e changeRequestTransition(String project, ChangeRequest d cr d)
e changeRequestCreated(String project, ChangeRequest d cr d)

These two methods are passed the name of the project as a String and the data structure
ChangeRequest_d. The ChangeRequest d data structure contains all of the current information
for the CR involved in the creation or transition. Users would need to write code similar to the
following snippet in order to implement the ChangeRequestListener interface:

import scm.pub.interfaces.ChangeRequestListener;
import scm.pub.transport.ChangeRequest_d;

public class WorkflowEngine implements ChangeRequestListener {
public void changeRequestTransition(String project, ChangeRequest_d cr_d) {

}

public void changeRequestCreated (String project, ChangeRequest_d cr_d) {

}

14-5

Chapter 14 API Concepts and Usage

14.7 Interacting with the System

There are three first class objects defined in the SpectrumSCM API that can be used to interact
with a running SpectrumSCM server. These objects implement the Proxy design pattern® as
described in the GOF (Gang of Four) design patterns book. Each object is a proxy or stand in for
the corresponding persistent object located in the SpectrumSCM server.

ChangeRequest: The ChangeRequest object is a proxy object for a live ChangeRequest
object located in the SpectrumSCM server. Calling the getlnfo() method on this object
will result in all of the latest information for this particular Change Request to be
returned. This object can be used to promote the Change Request into another phase or
add history elements and other notes directly to the Change Request.

Project: The Project object, just like the ChangeRequest object, is a proxy object for the
live Project object located in the SpectrumSCM server. This object defines methods that
allow the caller to extract project related information directly from the server. This object
also contains methods that allow for the creation of new ChangeRequests.

SemSystem: The ScmSystem object, just like the other objects, is a proxy for the actual
ScmSystem object. This object implements both the Proxy design pattern as well as the
Singleton design pattern. The getInstance() method is used to retrieve the one and only
instance of this object. The ScmSystem object contains methods that allow the caller to
retrieve a list of all active projects in the system as well as a list of all registered system
users. The object also contains an interface into the SpectrumSCM e-mail system, which
allows the caller to send E-mail messages to interested parties.

A workflow engine can be designed to use these objects transiently for short term operations,
or the objects, once constructed, can be stored at a higher scope level for use at a later time.
The decisions for the design of the workflow engine are left up to the implementer.

14.8 Transport Objects

Transport objects are used as simple data structures to pass large amounts of information into
and out of the proxy objects. The following is a list of all of the Transport Objects defined in the
SpectrumSCM APL

AttributeMap_d: An AttributeMap d object is returned from the method
Project.getProjectChangeRequestAttributes(). The AttributeMap d object is a mapping
of Change Request attribute names to a set of attribute values.

ChangeRequest_d: An ChangeRequest d object is returned from the method
ChangeRequest.getInfo(). This data structure contains all of the current and historical
information for the given Change Request.

5 Gamma, Helm, Johnson, Vlissides: Design Patterns, Elements of Reusable Object-Oriented Software. 1995 ISBN: 0-201-63361-2

14-6

Chapter 14 API Concepts and Usage

¢ ChangeRequestCreator_d: This object is specifically used to create a new Change
Request in the system. The contents of this object describe who the new Change Request
will be assigned to, in what phase and on which Generic (branch).

¢ ChangeRequestHistory d: The ChangeRequestHistory d object is actually a sub-object
that is returned as part of the ChangeRequest d object. It contains historical information
about the Change Request.

e User_d: An User d object is returned from the method ScmSystem.getUserInfo() as
well as Project.getUserInfo(). In the case of calling the getUserInfo() method on the
Project object, more information about the users current category assignments are
returned.

e CREFileDescriptor _d: This data structure contains the version, generic and path
information for a file under source code control. A set of CRFileDescriptor d objects
are returned from the method ChangeRequest.getFileDescriptors()

14.9 Compiling the Code

In order to compile an API based plugin, the developer must have access to the SpectrumSCM

server jar files. These jar files are located in the following directory:
<SCM_INSTALL_DIR>/lib

The developer’s CLASSPATH environment variable must be extended to include the

scmServer.jar file. The extended CLASSPATH variable should look like the following when

complete:

CLASSPATH="$SCLASSPATH:<SCM_INSTALL_DIR>/lib/scmServer.jar”

in Unix shell notation, or

CLASSPATH="%CLASSPATH%;<SCM_INSTALL_DIR>/lib/scmServer.jar”

in Windows batch notation.

Note that the path separators are platform dependent. Once the CLASSPATH variable is set
properly, compile the code with the normal java compiler arguments.

14.10 Installing the Code

The developer’s compiled code must be included in the SpectrumSCM server’s CLASSPATH.
A directory named custom_plugins exists in the SpectrumSCM server directory structure and
default CLASSPATH, the developer’s code can be placed in this directory.
<SCM_INSTALL_DIR>/SCM_VAR/custom_plugins

If the developer’s code needs to reside in a jar file, the jar can be placed in the SpectrumSCM
server lib directory. The script that is used to start the server must be modified to include this jar
file. If the server is running on a Windows platform edit the file startServer.bat. If the server is
running on a Unix or Mac platform, edit the file startServer.

14.11 Modify the Plugins XML file

In order to tell the SpectrumSCM server that a plugin has been added to the system, the plugins
XML file must be modified. This file is located in the following directory:
<SCM_INSTALL_DIR>/SCM_VAR/etc/plugins.xml

14-7

Chapter 14 API Concepts and Usage

The following is an example of a valid plugins. XML file:

<l-- This is an example of what the plugin file should look like -->
<l-- Note that the STATUS element can be set to either ENABLED OR DISABLED -->

<PLUGINS>
<l-- Put your plugin declarations here -->
<PLUGIN>
<NAME VALUE="Coreys Plugin"/>
<CLASS VALUE="com.scm.TestPlugin" />
<PROJECT VALUE="SCM"/>
<STATUS VALUE="ENABLED"/>
</PLUGIN>
</PLUGINS>

There are four (4) XML elements that must be in this file. Each element is described below:

e NAME: This is simply the name of the plugin and is used initially as a key to the plugin
itself.

e CLASS: This is the actual class name of the class that implements the listeners described
above.

e PROJECT: This is the Project name that this particular plugin should be associated
with. The same plugin can be associated with separate Projects as long as the developer
is careful not to include Java class attributes with global class scope in the plugin.

e STATUS: This determines whether the plugin should be used or not. Set this to
DISABLED if the plugin needs to be turned off.

14.12 Example plugins
The basic plugin skeleton is trivial to construct. Here is a working plugin that implements both
interfaces but doesn’t really do anything:

import java.io.*;

import scm.pub.interfaces.;

import scm.pub.transport.*;

import scm.pub.exceptions.*;

public class TestPlugin implements SystemListenet, ChangeRequestListener {
public void startUp() {

System.out.println("Startup called..");
H

public void shutDown() {
System.out.println("ShutDown called..");
}

14-8

Chapter 14 API Concepts and Usage

public void

changeRequestCreated(String project, ChangeRequest_d cr_d) {
System.out.println(“changeRequestCreated..”);

H

public void

changeRequestTransition(String project, ChangeRequest_d cr_d) {
System.out.println("ChangeRequestTransition called...");

H

Note that the only thing this plugin does is report to the standard output when the interface
methods have fired. Compile and add this plugin to the system to see which user level actions
cause these methods to execute. For instance, creating a new Change Request will cause the
changeRequestCreated() method to execute. Progressing that CR into the TBA state will cause
the changeRequestTransition() method to execute. The start() and stop() methods will execute
when the server is started and stopped.

This next code snippet accesses all of the major first class objects and extracts some information
from a Change Request:

public void
changeRequestCreated(String project, ChangeRequest_d cr_d) {
java.lang.System.out.println(cr_d.toString());

try {
ScmSystem sys = ScmSystem.getlnstance();
Project proj = new Project(project);
ChangeRequest cr = new ChangeRequest(proj, cr_d.getCRId());

System.out.println(cr.getInfo().toString());

} catch(Exception e) {
System.ert.println("Caught: " + e.getMessage());
H

Note that this code is actually redundant. The ChangeRequest d information that was extracted
from the cr.getInfo() call was already handed to the enclosing method as an argument. The
example is just to show how to access some of the more important objects. Also notice that the
System object is accessed by simply calling the static method getlnstance() on the System class.
Projects and ChangeRequests can be constructed as often as necessary. All of these objects can
be stored for later use once they have been constructed.

14-9

Chapter 14 API Concepts and Usage

This next example is a more complete example of an automated workflow engine. In this code
snippet, the ChangeRequest passed to the transition method is examined and automatically
progressed into the next life-cycle phase:

public void changeRequestTransition(String project, ChangeRequest_d cr_d) {

ScmSystem sys = null;
Project proj = null;
ChangeRequest cr = null;
Vector phases = null;
try {
sys = ScmSystem.getInstance();
proj = new Project(project);

phases = proj.getLifeCyclePhases();

cr = new ChangeRequest(proj, cr_d.getCRId());
} catch(Exception e) {

System.etr.println("Caught: " + e.getMessage());

retutrn;

try {
ChangeRequest_d crObj = cr.getlnfo();
ChangeRequestHistory_d crh_d = null;

Vector history = crObj.getHistoryInfo();

String lastPhase = null;
String nextPhase = null;
int index =-1;

for(int indx = history.size() - 1; indx >= 0; indx--) {
crh_d = (ChangeRequestHistory_d)history.get(indx);
if(crh_d.getPhase().endsWith("note")) {

continue;

} else {
lastPhase = crh_d.getPhase();
break;

}

}
index = phases.indexOf(lastPhase);

nextPhase = (String)phases.get(index+1);
cr.assignToPhase(crh_d.getUser(), crObj.getCurrentGeneric(),
nextPhase, "Here's some more work");
sys.sendEMail(“joe@x.com”, "CR Status", "Assigned CR <" +
crObj.getCRId() + "> to phase <" +
nextPhase + ">");
} catch(Exception e) {
System.etr.printn("Caught: " + e.getMessage());
}

14-10

Chapter 14 API Concepts and Usage

Unfortunately, in order to get all of the code into this single example, some of the empty lines
had to be removed from the text and the vast majority of the error handling code has also been
removed. The last few lines in the example are the most important. The method assignToPhase()
called against the ChangeRequest actually assigns this particular CR to the next phase in the life-
cycle and adds a small note. The next line uses the e-mail interface to send mail to an interested

party.

14.13 Summary

The SpectrumSCM API allows a developer to easily create fully automated business processes
and external system interfaces. Currently the API is limited to this type of functionality. The
developers of the API chose to exclude a file level listener interface from the current API
implementation. The existence of such a listener has limited use in a fully integrated tool like
SpectrumSCM. One of the basic tenets of SpectrumSCM is that individual files are worked or
changed as part of a larger issue or change request. In this scenario, the need to know when a
single file has changed, or to act upon a single file change is unnecessary. In other systems that
are interfaced instead of integrated, this type of functionality may be necessary as individual file
changes are not already associated with a traceable statement of work. File information can be
retrieved through the corresponding Change Request.

14-11

